Study on valence offsets at $\operatorname{In}_{x} \mathbf{G a}_{1-x} \mathbf{A s} / \operatorname{In}_{x} A l_{1-x} A s$ heterojunction

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1997 J. Phys.: Condens. Matter 9439
(http://iopscience.iop.org/0953-8984/9/2/012)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.207
The article was downloaded on 14/05/2010 at 06:07

Please note that terms and conditions apply.

Study on valence offsets at $\mathbf{I n}_{x} \mathbf{G a}_{1-x} \mathbf{A s} / \mathbf{I n}_{x} \mathbf{A l} \mathbf{1}_{1-x}$ As heterojunction

Jin-Cheng Zheng \dagger, Yong-Mei Zheng \dagger and Ren-Zhi Wang $\dagger \ddagger$
\dagger Department of Physics, Xiamen University, Xiamen 361005, People's Republic of China \ddagger China Centre for Advanced Science and Technology (World Laboratory), PP Box 8730, Beijing 100080, People's Republic of China

Received 12 June 1996

Abstract

In this paper, the valence band offsets $\Delta E_{v}(x)$ as a function of the alloy concentration x of the heterojunctions $\operatorname{In}_{x} \mathrm{Ga}_{1-x} \mathrm{As} / \mathrm{In}_{x} \mathrm{Al}_{1-x}$ As are studied, using the average-bond-energy theory in conjunction with a cluster expansion method. It is shown that the variation in $\Delta E_{v}(x)$ is nearly linear and the calculation results are in very good agreement with relevant experimental data.

1. Introduction

$\mathrm{In}_{x} \mathrm{Ga}_{1-x} \mathrm{As} / \operatorname{In}_{x} \mathrm{Al}_{1-x} \mathrm{As}$ heterojunctions are widely used in microwave and optoelectronic devices [1]. The $\operatorname{In}_{x} \mathrm{Ga}_{1-x} \mathrm{As} / \operatorname{In}_{x} \mathrm{Al}_{1-x} \mathrm{As}$ heterostructure devices (where the In content is about 0.3) grown on an unstrained metamorphic buffer, such as high-electron-mobility transistors, heterostructure insulated-gate field effect transistors and resonant tunnelling diodes have become of great interest recently [2]. Heterojunction devices based on the lattice-matched semiconductors $\mathrm{In}_{0.53} \mathrm{Ga}_{0.47} \mathrm{As}$ and $\mathrm{In}_{0.52} \mathrm{Al}_{0.48} \mathrm{As}$ are of considerable interest also. Devices that use $\operatorname{In}_{0.53} \mathrm{Ga}_{0.47} \mathrm{As} / \mathrm{In}_{0.52} \mathrm{Al}_{0.48} \mathrm{As}$ heterointerfaces are being developed for a wide variety of optoelectronic and high-speed electronic applications.

The valence-band offsets (VBOs) (the value of ΔE_{v}) at semiconductor heterointerfaces are the most important parameters in determining the electrical and optical properties of heterojunctions and superlattices. Because of its importance, this topic has stimulated a great deal of experimental and theoretical research work recently. Despite the fact that several important theoretical methods for VBOs ΔE_{v} at lattice-matched and lattice-mismatched heterojunctions constructed by element or compound semiconductors have been presented in recent years [3], theoretical studies on $\Delta E_{v}(x)$ at alloy-type heterojunctions are still very scarce. In this paper, we present a theoretical method of calculating $\Delta E_{v}(x)$ for threecomponent alloy $\operatorname{In}_{x} \mathrm{Ga}_{1-x} \mathrm{As} / \operatorname{In}_{x} \mathrm{Al}_{1-x} \mathrm{As}$ heterojunctions for the first time, which consists of the average-band-energy method [4] in conjunction with the cluster expansion method, based on the LMTO-ASA band-structure method. We found that the calculation results are in very good agreement with relevant experimental data. It is shown that it is a good method to calculate the VBOs $\Delta E_{v}(x)$ of alloy heterojunctions using the average-bandenergy method in conjunction with the cluster expansion method.

2. Band structure and average band energy of the five ordered structures

In this paper, the band structures of the three-component alloy $\operatorname{In}_{l} \mathrm{Ga}_{4-l} \mathrm{As}_{4}$ and $\operatorname{In}_{l} \mathrm{Al}_{4-l} \mathrm{As}_{4}$ are calculated with the LMTO ASA method. Among the five ordered structures $(l=$ $0,1,2,3$ and 4), the $l=0$ and 4 compounds have a zincblende (ZB) structure, the $l=2$ compound a CuAu structure $\left(\mathrm{L} 1_{0}\right)$, and the $l=1$ and 3 compounds luzonite $\left(\mathrm{L} 1_{2}\right)$ structures [5]. The lattice constants of the five ordered structures can be obtained as the average of the bulk materials GaAs, AlAs and InAs in proportion to their contents, i.e. according to the well known Vegard [6] law:

$$
\begin{align*}
& a_{I n_{l} G a_{4-l} A s}=(1-l / 4) a_{I n A s}+(l / 4) a_{G a A s} \tag{1}\\
& a_{I n_{l} A l_{4-l} A s}=(1-l / 4) a_{I n A s}+(l / 4) a_{A l A s} . \tag{2}
\end{align*}
$$

After obtaining the self-consistent band structures for the five ordered structures, we determine their bonding energy E_{b}, antibonding energy E_{a} and average bond energy E_{m} from

$$
\begin{align*}
E_{b} & =\frac{1}{M N} \sum_{n=1}^{M} \sum_{k} E_{n}(\boldsymbol{k}) \tag{3}\\
E_{a} & =\frac{1}{M N} \sum_{n=M+1}^{2 M} \sum_{k} E_{n}(\boldsymbol{k}) \tag{4}\\
E_{m} & =\left(E_{b}+E_{a}\right) / 2 \tag{5}
\end{align*}
$$

respectively, where N is the number of unit cells and M the number of valence bands. For the $\mathrm{ZB}, \mathrm{L1}_{0}$ and $\mathrm{L} 1_{2}$ structures, M is set equal to 4,8 and 16 , respectively. The special-K-point method [7] is adopted for the summation over the Brillouin zone. From the test calculation of AlAs and GaAs, we find that the values of the average bond energy E_{m}, the valence band maximum E_{v} and the valence offset parameter $E_{m v}$ given by the two-special-K-point calculation are different from those given by the ten-special-K-point calculation by about $0.1 \mathrm{eV}, 0.2 \mathrm{eV}$ and 0.07 eV respectively. However, the difference in the VBO values of AlAs/GaAs given by two methods is smaller than 0.001 eV . It is shown that there are some effects on the $E_{m^{-}}, E_{v^{-}}$and $E_{m v^{-}}$-values of bulk materials using the calculation of a different number of special K points, but few effects on the VBO values of the heterojunction. Therefore, in this paper, two special K points are used for the ZB and $\mathrm{L1}_{0}$ structures and only one special K point $(2 \pi / a)\left(\frac{1}{4}, \frac{1}{4}, \frac{1}{4}\right)$ [8], which corresponds to the two special K points for the ZB structure, is used for the $\mathrm{L1}_{2}$ structure. In Christensen's [9] supercell calculations for VBO determination, he treated the cation's shallow d orbitals as core and valence states, respectively, and took the average of the two VBO values as the final result so as to include the effects of the cation's shallow orbitals on the VBO value. In the same consideration, we take the Ga 3 d and In 4 d orbitals as core states (i.e. only s, p states are taken as valence states) and valence states (i.e. s, p, d states are all taken as valence states), respectively, for the band-structure calculations of the five ordered structures in this paper. The two treatments are noted as approach 1 (as core states) and approach 2 (as valence states), respectively, hereafter. The results of bonding energy E_{b}, antibonding energy E_{a}, average bond energy E_{m} and the valence band maximum E_{v} for the five ordered structures of $\mathrm{In}_{l} \mathrm{Ga}_{4-l} \mathrm{As}_{4}$ and $\mathrm{In}_{l} \mathrm{Al}_{4-l} \mathrm{As}_{4}$ given by the two approaches are listed in table 1.

Table 1. Results of bonding energy E_{b}, antibonding energy E_{a}, average bond energy E_{m} and the valence-band maximum E_{v} as well as the valence offset parameter $E_{m v}$ for the five ordered structures of $\operatorname{In}_{l} \mathrm{Ga}_{4-l} \mathrm{As}_{4}$ and $\operatorname{In}_{l} \mathrm{Al}_{4-l} \mathrm{As}_{4}$, given by approaches 1 and 2 as stated in the text.

	Approach 1					Approach 2				
	$\begin{aligned} & E_{b 1} \\ & (\mathrm{eV}) \end{aligned}$	$\begin{aligned} & E_{a 1} \\ & (\mathrm{eV}) \end{aligned}$	$\begin{aligned} & E_{m 1} \\ & (\mathrm{eV}) \end{aligned}$	$\begin{aligned} & E_{v 1} \\ & (\mathrm{eV}) \end{aligned}$	$\begin{aligned} & E_{m v 1} \\ & (\mathrm{eV}) \end{aligned}$	$\begin{aligned} & E_{b 2} \\ & (\mathrm{eV}) \end{aligned}$	$\begin{aligned} & E_{a 2} \\ & (\mathrm{eV}) \end{aligned}$	$\begin{aligned} & E_{m 2} \\ & (\mathrm{eV}) \end{aligned}$	$\begin{aligned} & E_{v 2} \\ & (\mathrm{eV}) \end{aligned}$	$\begin{aligned} & E_{m v 2} \\ & (\mathrm{eV}) \end{aligned}$
$l=0 \mathrm{GaAs}$	-6.605	3.651	-1.477	-1.363	-0.114	-6.614	3.832	-1.391	-1.133	-0.258
$l=1 \mathrm{In}_{1} \mathrm{Ga}_{3} \mathrm{As}_{4}$	-6.585	3.477	-1.554	-1.451	-0.103	-6.594	3.626	-1.484	-1.237	-0.247
$l=2 \mathrm{InGaAs}_{2}$	-6.577	3.301	-1.638	-1.555	-0.083	-6.590	3.419	-1.586	-1.360	-0.226
$l=3 \mathrm{In}_{3} \mathrm{Ga}_{1} \mathrm{As}_{4}$	-6.577	3.123	-1.727	-1.682	-0.045	-6.597	3.211	-1.693	-1.502	-0.191
$l=4 \mathrm{InAs}$	-6.585	2.944	-1.820	-1.814	-0.006	-6.614	3.004	-1.805	-1.650	-0.155
$l=0 \mathrm{AlAs}$	-6.251	3.680	-1.285	-1.629	0.344					
$l=1 \mathrm{In}_{1} \mathrm{Al}_{3} \mathrm{As}_{4}$	-6.322	3.508	-1.407	-1.636	0.229	-6.328	3.519	-1.405	-1.615	0.210
$l=2 \operatorname{InAlAs}_{2}$	-6.402	3.330	-1.536	-1.652	0.116	-6.417	3.354	-1.531	-1.586	0.055
$l=3 \mathrm{In}_{3} \mathrm{Al}_{1} \mathrm{As}_{4}$	-6.490	3.141	-1.675	-1.733	0.058	-6.513	3.182	-1.666	-1.628	-0.038
$l=4 \mathrm{InAs}$	-6.585	2.944	-1.820	-1.814	-0.006	-6.614	3.004	-1.805	-1.650	-0.155

3. The valence-band offsets parameter of the alloys

The value of the band offsets of heterojunction is mainly determined by the band offset parameter ($E_{m v}$, i.e. $E_{m}-E_{v}$) of the five ordered semiconductor structures. We can write the band offset parameters $E_{m v}$ of $\mathrm{In}_{l} \mathrm{Ga}_{4-l} \mathrm{As}_{4}$ and $\mathrm{In}_{l} \mathrm{Al}_{4-l} \mathrm{As}_{4}$ given by two approaches as follows:

$$
\begin{align*}
& E_{m v 1}=E_{m 1}-E_{v 1} \tag{6}\\
& E_{m v 2}=E_{m 2}-E_{v 2} \tag{7}
\end{align*}
$$

The band offset parameter of the alloys $\operatorname{In}_{x} \mathrm{Ga}_{1-x}$ As and $\mathrm{In}_{x} \mathrm{Al}_{1-x}$ As can be obtained by making use of the cluster expansion method, in terms of the data of the five ordered structures listed in table 1, i.e.

$$
\begin{align*}
& E_{m v 1}(x)=\sum_{l} P_{l}(x) E_{m v 1}^{l} \tag{8}\\
& E_{m v 2}(x)=\sum_{l} P_{l}(x) E_{m v 2}^{l} \tag{9}
\end{align*}
$$

where the statistical weight $P_{l}(x)=\binom{4}{l} x^{l}(1-x)^{4-l}$ is the possibility that the l short region ordered structure occurs in the alloy. The regressed two-order polynomials for $E_{m v 1}(x)$, and $E_{m v 2}(x)$ are

$$
\begin{align*}
& \mathrm{In}_{x} \mathrm{Ga}_{1-x} \mathrm{As}: E_{m v 1}(x)=0.063 x^{2}+0.046 x-0.114 \tag{10}\\
& E_{m v 2}(x)=0.053 x^{2}+0.052 x-0.259 \tag{11}\\
& \mathrm{In}_{x} \mathrm{Al}_{1-x} \mathrm{As}: E_{m v 1}(x)=0.132 x^{2}-0.481 x+0.344 \tag{12}\\
& E_{m v 2}(x)=0.080 x^{2}-0.578 x+0.345 \tag{13}
\end{align*}
$$

The $E_{m v 1}(x)$ and $E_{m v 2}(x)$ curves of $\mathrm{In}_{x} \mathrm{Ga}_{1-x}$ As are shown in figure 1, and those of $\mathrm{In}_{x} \mathrm{Al}_{1-x} \mathrm{As}$ are shown in figure 2. Comparing $E_{m v 1}(x)$ and $E_{m v 2}(x)$ curves in figure 1 and figure 2, we can find that the results given by approach 1 are somewhat higher than those from approach 2. The curve of $E_{m v 1}(x)$ is nearly parallel to $E_{m v 2}(x)$ with the Ga

Figure 1. $E_{m v}(x)$ of $\mathrm{In}_{x} \mathrm{Ga}_{1-x}$ As as a function of x. The $E_{m v 1}(x)$ curves are given by approach 1 ; the $E_{m v 2}(x)$ curves are given by approach 2 .
concentration increasing in $\operatorname{In}_{x} \mathrm{Ga}_{1-x} \mathrm{As}$, but the differences between $E_{m v 1}(x)$ and $E_{m v 2}(x)$ increase with increasing Al concentration in $\mathrm{In}_{x} \mathrm{Al}_{1-x} \mathrm{As}$.

4. Determination of the valence band offset at the $\mathbf{I n}_{x} \mathbf{G a}_{1-x} \mathbf{A s} / \mathbf{I n}_{x} \mathbf{A l}_{1-x} \mathbf{A s}$ heterojunctions

For the determination of the VBO at an A / B heterojunction, the average-bond-energy theory requires only the calculations for bulk materials A and B to determine their average bond energy E_{m} and the valence band maximum E_{v}. Then the $\Delta E_{v}(x)$-values can be obtained by aligning the average bond energy E_{m} in materials A and B :

$$
\begin{equation*}
\Delta E_{v}(x)=\left[E_{m}^{B}(x)-E_{v}^{B}(x)\right]-\left[E_{m}^{A}(x)-E_{v}^{A}(x)\right] \tag{14}
\end{equation*}
$$

i.e.

$$
\begin{equation*}
\Delta E_{v}(x)=E_{m v}^{B}(x)-E_{m v}^{A}(x) \tag{15}
\end{equation*}
$$

So we can write $\Delta E_{v 1}(x)$ with approach 1 as the regressed two-order polynomial

$$
\begin{equation*}
\Delta E_{v 1}(x)=0.069 x^{2}-0.527 x+0.459 \tag{16}
\end{equation*}
$$

and $\Delta E_{v 2}(x)$ with approach 2 can be written as

$$
\begin{equation*}
\Delta E_{v 2}(x)=0.027 x^{2}-0.630 x+0.604 \tag{17}
\end{equation*}
$$

Figure 2. The $E_{m v}(x)$ of $\operatorname{In}_{x} \mathrm{Al}_{1-x}$ As as a function of x. The $E_{m v 1}(x)$ curves are given by approach 1 ; the $E_{m v 2}(x)$ curves are given by approach 2 .

We can obtain the average value of $\Delta E_{v}(x)$ as $\Delta E_{v}(x)=\left(\Delta E_{v 1}(x)+\Delta E_{v 2}(x)\right) / 2$, i.e.

$$
\begin{equation*}
\Delta E_{v}(x)=0.048 x^{2}-0.578 x+0.532 \tag{18}
\end{equation*}
$$

These results are shown in figure 3 by a solid line together with the results from the relevant experimental data. The detailed values of the VBO in the five ordered structures and the alloy-type heterojunctions are listed in table 2 . From equation (18) and figure 3, we can see that the $\Delta E_{v}(x)$-value of $\operatorname{In}_{x} \mathrm{Ga}_{1-x} \mathrm{As} / \mathrm{In}_{x} \mathrm{Al}_{1-x} \mathrm{As}$ is a function of x, and the $\Delta E_{v}(x)$ value decreases with increasing x, i.e. with increasing In content (i.e. decreasing $G a$ and Al contents). Equation (18) shows that the second-order coefficient which is characteristic of the bending of the $\Delta E_{v}(x)$ curve is very small (0.048), and the change in $\Delta E_{v}(x)$ with x is nearly linear. Therefore, the $\Delta E_{v}(x)$-values of the alloy $\operatorname{In}_{x} \mathrm{Ga}_{1-x} \mathrm{As} / \operatorname{In}_{x} \mathrm{Al}_{1-x}$ As heterojunctions can be obtained approximately by linear regression from the ΔE_{v}-values of the bulk materials GaAs, AlAs and InAs.

5. Conclusions

In this paper, we present a theoretical method of calculating $\Delta E_{v}(x)$ for the three-component alloy $\operatorname{In}_{x} \mathrm{Ga}_{1-x} \mathrm{As} / \mathrm{In}_{x} \mathrm{Al}_{1-x}$ As heterojunctions. The average-bond-energy method [4], in which the average bond energy is used as a reference level for VBO determination, requires very little computational effort and has shown satisfactory accuracy for a series of latticematched and lattice-mismatched heterojunctions [3, 4].

Figure 3. The variation in the VBO at $\mathrm{In}_{x} \mathrm{Ga}_{1-x} \mathrm{As} / \operatorname{In}_{x} \mathrm{Al}_{1-x}$ As with x (solid line) and relevant experimental data. ($1^{* *}$ is quoted from [1].)

Table 2. The calculated values of the VBO for the five ordered structure heterojunctions $\mathrm{In}_{l} \mathrm{Ga}_{1-l} \mathrm{As} / \mathrm{In}_{l} \mathrm{Al}_{1-l} \mathrm{As}(l=0,1,2,3$ and 4$)$ given by the two $\operatorname{In} 4 \mathrm{~d}$ orbital treatments and Ga 3 d orbital treatments (i.e. $\Delta E_{v 1}$ and $\Delta E_{v 2}$) and their average (ΔE_{v}), and the corresponding $\Delta E_{v}(x)$ for the heterojunction $\mathrm{In}_{x} \mathrm{Ga}_{1-x} \mathrm{As} / \mathrm{In}_{x} \mathrm{Al}_{1-x} \mathrm{As}$.

	$\Delta E_{v 1}$ (eV)	$\Delta E_{v 2}$ (eV)	ΔE_{v} (eV)	$\Delta E_{v}(x)$ (eV)
$l=0 \mathrm{GaAs} / \mathrm{AlAs}$	0.458	0.602	0.530	0.532
$l=1 \mathrm{In}_{1} \mathrm{Ga}_{3} \mathrm{As}_{4} / \mathrm{In}_{1} \mathrm{Al}_{3} \mathrm{As}_{4}$	0.333	0.457	0.395	0.390
$l=2 \mathrm{InGaAs}_{2} / \mathrm{InAlAs}_{2}$	0.198	0.280	0.239	0.254
$l=3 \mathrm{In}_{3} \mathrm{Ga}_{1} \mathrm{As}_{4} / \mathrm{In}_{3} \mathrm{Al}_{1} \mathrm{As}_{4}$	0.103	0.153	0.128	0.125
$l=4 \mathrm{InAs} / \mathrm{InAs}^{2}$	0.000	0.000	0.000	0.000

Comparing the $\Delta E_{v}(x)$-values of $\operatorname{In}_{x} \mathrm{Ga}_{1-x} \mathrm{As} / \operatorname{In}_{x} \mathrm{Al}_{1-x} \mathrm{As}$ (listed in table 3, when $x=y$ and when x is very close but not equal to y) with the experimental data, we find that the present results are in good agreement with the experimental data for different concentrations x. It is shown that the average-band-energy method in conjunction with the cluster expansion method is an effective method for calculating the VBOs of multicomponent alloy-type heterojunctions.

Acknowledgments

The authors gratefully acknowledge the support of the National Natural Science Foundation of China, the Natural Science Foundation of Fujian Province, the Special Doctoral Research

Table 3. The experimental data on the VBOs $\left(\Delta E_{v}\right)$ of $\operatorname{In}_{x} \mathrm{Ga}_{1-x} \mathrm{As} / \operatorname{In}_{y} \mathrm{Al}_{1-y}$ As heterojunctions compared with the theoretical data in this work.

		$\Delta E_{v}(\mathrm{eV})$ for the following (x, y)				
Reference	$Q_{c}\left(=\Delta E_{c} / \Delta E_{g}\right)$	$(0,0)$	$(0.3,0.29)$	$(0.3,0.3)$	$(0.52,0.52)$	$(0.53,0.52)$
This work	0.657^{a}	0.532	0.367	0.363	0.244	0.243
$[1]$	0.66		0.36			
$[1]^{\mathrm{b}}$	0.62		0.41		0.22	
$[2]$	0.68	0.55		0.22		
$[10]$	0.72					
$[11]$	0.650					
$[12]$						

${ }^{\mathrm{a}}$ When $(x, y)=(0.3,0.29), \Delta E_{g}=1.07, \Delta E_{c}=\Delta E_{g}-\Delta E_{v}=0.703$ and $Q_{c}=\Delta E_{c} / \Delta E_{g}=0.657$.
${ }^{\mathrm{b}}$ Quoted from [1].

Foundation of the Chinese State Commission of Education, and the industrial department of Xiamen Photoelectron Company.

References

[1] Shieh J L, Chyi J I, Lin R J, Lin R M and Pan J W 1994 Electron. Lett. 302172
[2] Waldrop J R, Kraut E A, Farley C W and Grant W 1991 J. Appl. Phys. 69372
[3] Wang R Z and Huang M C 1993 Sci. China A 36319
[4] Wang R Z, Ke S H and Huang M C 1995 Phys. Rev. B 511935
[5] Lambrecht W R L and Segall B 1993 Phys. Rev. B 479289
[6] Vegard L 1921 Z. Phys. 517
[7] Chadi D J and Cohen M L 1973 Phys. Rev. B 85747
[8] Wei S H and Zunger A 1989 Phys. Rev. B 393279
[9] Christensen N E 1988 Phys. Rev. B 374528
[10] Batey J and Wright S L 1986 J. Appl. Phys. 59200
[11] Sugiyama Y, Inata T, Fujii T, Nakata Y, Muto S and Hiyamizu S 1986 Japan. J. Appl. Phys. 25 L648
[12] Kopf R F, Herman M H, Schnoes M L, Perley A P, Livescu G and Ohring M 1992 J. Appl. Phys. 715004

